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Abstract 

A high-resolution Vegetation Health Index (VHI) is proposed as an indicator of the water stress condition 

of vegetation cover. This index integrates satellite-derived vegetation and thermal information; it is a 

function of NDVI (Normalised Difference Vegetation Index, derived from Sentinel-2) and LST (Land 

Surface brightness Temperature, from MODIS). The VHI has already been tested experimentally for 

African environments (Rojas et al., 2011), exhibiting good performance, making it potentially suitable for 

insurance purposes.   

This index informs a new satellite-based insurance scheme for Kenyan smallholder farmers. The proposed 

service is based on an online tool enabling rapid decision-making for compensations due to farmers. The 

tool shows VHI multi-temporal plots, tables and maps at 20m resolution, refreshed every 5 days. The 

service is undergoing an in-country trial for deployment to insurance providers, farmer cooperatives and 

Ministries in Kenya. This project is supported by grant funding within the UK Space Agency’s 

International Partnership Programme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key Words: Agri-insurance, Drought, Kenya, Sentinel-2, Vegetation Health Index 

 

 



 
 

 

 

1. Introduction  

In Kenya the agriculture sector is a very important part of the economy and, according to FAO, the 

‘sector employs more than 40 per cent of the total population and more than 70 per cent of Kenya's rural 

people’ (FAO, 2014). However, many farmers lack robust information on their exposure to flood and 

drought risks. This partly reflects a lack of data on vulnerabilities, with meteorological data currently 

collected from expensive and sometimes unreliable meteorological stations, typically serving an area with 

a 10km radius, and little geographically granular understanding of the relationship between crop 

production and local rainfall variations. 

The project described in this paper is addressing this information gap for agriculture in Kenya by 

analysing free-to-use Earth Observation (EO) data from the European Space Agency’s (ESA) Sentinel-2 

satellite for drought resilience monitoring. In addition, space-derived temperature data from NASA’s 

MODIS (Moderate Resolution Imaging Spectroradiometer) mission are also used in a drought indexing 

mechanism that will be accessible to users online.  

The satellite data inputs, essentially greenness and thermal information, are processed with an innovative 

algorithm, based upon a huge amount of multi-temporal input data, which generates a Vegetation Health 

Index (VHI). This is a simple, user-friendly product for end-users. The VHI is generated every five days 

throughout the growing season thus providing, with a resolution of 20m on the ground, a very detailed 

assessment of crop development and potential yields. 

This project is supported by grant funding within the UK Space Agency’s International Partnership 

Programme (IPP) (www.gov.uk/government/collections/international-partnership-programme). IPP is a 

five year, £152 million ($US195 million) programme run by the UK Space Agency. IPP is part of and is 

funded from the Department for Business, Energy and Industrial Strategy’s (BEIS) Global Challenges 

Research Fund (GCRF): a £1.5 billion fund announced by the UK Government, which supports cutting-

edge research and innovation on global issues affecting developing countries. The Programme, which 

encompasses forestry, land use, agriculture, marine environments, disaster resilience, health and 

education, and renewable energy, is being delivered in alignment with UK aid strategy and the United 

Nations’ (UN) Sustainable Development Goals (SDGs).  

The VHI product is designed to increase the information available to smallholder farmers on the health of 

their crops, so that they can make better decisions. The VHI can also be used to develop more accurate 

http://www.gov.uk/government/collections/international-partnership-programme


 
 

and cost-efficient agri-insurance products. The index is especially suitable to identify areas of water 

deficit at a field level. Particularly important is monitoring the flowering point: if the crop fails to 

generate flowers it is not likely to produce any yield. Therefore the index can also be used as early 

warning for a micro-insurance scheme to budget the expected payments to the identified farmers with 

failed crops in the following 6–8 weeks. Developments of the scheme will be designed to trigger 

insurance pay-outs automatically in the event of poor harvest, thus eliminating the traditional paperwork 

trail for insurance claims. 

In this paper we present the process for calculation of the Vegetation Health Index and the validation 

activities undertaken in the selected study area.  We then discuss how this can be used to stimulate both 

the agri-insurance market and longer term economic development.  As part of the IPP process, we have 

also undertaken a Cost-Effectiveness Analysis in order to demonstrate how the use of satellite data does 

provide a cost-effective solution to the need for improved information for drought preparedness. 

2. Description of the Project 

Study area 

The selected study area includes the Nyando Basin in the west of Kenya. According to FAO, ‘the Nyando 

river basin covers an area of 3 500 km² of western Kenya and faces some of the most severe problems of 

agricultural stagnation, environmental degradation and deepening poverty found anywhere in Kenya. 

The river drains into the Winam gulf of Lake Victoria and is a major contributor of sediment, nitrogen 

and phosphorus to the lake.’ (Swallow et al., 2003) The principal crops of the area include maize, 

sorghum and beans with commercial production of sugar cane and irrigated rice. (Vescovi et al., 2009) 

For the VHI calculation the selected area is based on the ESA Sentinel-2 grid tile 36MWE which is close 

to Lake Victoria, as illustrated in Figure 1. Each Sentinel-2 grid tile corresponds to an area of 100km by 

100km which means that about 20 Sentinel-2 tiles are needed to cover the principal agricultural belt of 

Kenya. 

(Figure 1) 

Calculation of the Vegetation Health Index 

After a review of the published scientific literature on drought indices (see Table 1), including several 

recent publications, a number of possible candidate indices were shortlisted.  Evidence from their 

published experimental usage in different geographic and climatic contexts was reviewed in order to 

assess their robustness for potential operational use for agricultural insurance purposes.  

(Table 1) 



 
 
The Vegetation Health Index (VHI) was identified, tested and eventually selected because of its 

successful application in numerous case studies (Kogan, 1995a, 1995b). The VHI is a composite index 

which integrates the Vegetation Condition Index (VCI) and the Temperature Condition Index (TCI). The 

chosen method follows the principles established by Rojas et al. (2011) who produced a drought 

probability map for Africa using NOAA AVHRR data for the time window 1981 - 2010.  

Their method is considered in this study as a framework for generation of a higher resolution map, at 20m 

resolution, using Sentinel-2 optical products and MODIS thermal information (from the MOD11 

product), as basic inputs for the chlorophyll presence and thermal status of the crops, respectively. 

Following Rojas, et al. (2011), the VHI is defined as follows: 

VHIi =w1*VCIi +w2*TCIi       [1] 

Where:  

- TCIi  = 100* (Tmax–Ti)/(Tmax–Tmin) 

Where: Ti is the temperature value of the considered 8-day period, while Tmax and Tmin are 

maximum and minimum brightness temperatures, respectively, calculated from daily time series 

for each MODIS product and each pixel. The MODIS product providing the brightness 

temperature is MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN 

Grid V005 (short name: MOD11A1). 

 

- VCIi = 100* (NDVIi–NDVImin)/(NDVImax–NDVImin) 

Where: NDVIi is the Sentinel-2 Normalised Difference Vegetation Index (NDVI) of the 

considered day, while NDVImax and NDVImin are absolute maximum and minimum NDVIs, 

respectively, as calculated from the Sentinel-2 multi-temporal series.  

 

- w1 and w2 are coefficients which can have various weights. Rojas et al. (2011), suggest 0.5 for 

both, however in this study, after validation, it was found that better results are given with w1= 

0.6 and w2=0.4. 

Essentially, the chlorophyll information is derived from the multi-temporal NDVI derived from Sentinel-

2 data, atmospherically corrected, resampled at 20m and normalised across the previous two-year time-

series within the maximum and the minimum NDVI. Whereas, the thermal information is derived from 

the MODIS Land Surface Temperature of the product MOD11A2, re-projected to UTM, then clipped and 

resampled to 20m to match the final product.  



 
 
The two ESA Sentinel-2 platforms currently orbiting deliver product every five days, whereas MOD11A2 

product is available every eight days. However, the processing is designed in such a way that a VHI map 

can actually be generated every five days.  

The processing chain for calculating the VHI is illustrated in Figure 2. This processing chain is based on 

using the SeNtinel’s Application Platform (SNAP) tool made available by ESA and is developed as a 

fully automated process from the basic data input to preparation of the final VHI product ready for 

delivery. Atmospheric corrections with the Sent2Cor module are applied before processing Sentinel-2 

images, whereas MODIS products are already corrected. These atmospheric corrections can partially 

remove haze but not clouds.  

(Figure 2) 

It is not in the scope of this paper to describe all the details of each processing step because the majority 

of them are standard image processing operations. However the cloud removal process deserves a specific 

mention.  

Cloud Removal Processing 

The farming season in the study area starts at the onset of the rainy season. This implies that the imagery 

is usually cloudy during the farming period, when the vegetation index is most relevant; therefore a cloud 

removal algorithm must be applied. Airbus has developed a bespoke smoothing function to remove 

clouds almost completely from the VHI products and to clean the noise (residual haze) of the images. The 

algorithm assumes a continuous crop growth across consecutive cloud-free acquisitions and estimates the 

VHI value of the cloudy pixels for up to five consecutive cloudy acquisitions.   

Cloud Removal Processing Results 

The result of the Airbus cloud removal process is illustrated in Figure 3. The blue line represents the VHI 

values as output by the system without any cloud removal process: both clouds (0 values) and noisy haze 

(sudden VHI drops) make the resulting curve almost uninterpretable in any further process. However, the 

red line represents the algorithm result: cloudy and hazy values are identified and replaced with values 

which are a function of the crop growth and of cloud-free values taken from past and future satellite data 

acquisitions. The result shows clear representations of the rainy seasons with high VHI values, when 

crops are farmed, and the dry season with low VHI values.  

(Figure 3) 

 



 
 
Validation Process 

The output VHI maps were validated in the field through ground truth campaigns carried out in June-July 

2018 across the study area. The technical principles of this validation exercise observed CEOS 

(Committee on Earth Observation Satellites) Guidelines (CEOS, 2014). The spacing and location of the 

measurements in the field observed the sampling strategy outlined in the Copernicus Manual (Copernicus, 

2015). Copernicus is the European Union's Earth Observation Programme supporting monitoring of the 

environment from satellite and in-situ ground data. 

All collected field data were then re-mapped in a database sheet where each field observation could match 

the correspondent VHI pixel value on the map. A time and location correspondence was obviously 

maintained. Eventually, correlation statistics were calculated and scatterplots were created to show the 

relationships between field observations and the VHI based on satellite data. 

Validation Results 

Examples of scatterplots that have been prepared to show the correlation between field observations and 

VHI values are presented in Figure 4. Each point of the plot represents the field observation (measured 

percentage of green coverage, in this example) and the corresponding VHI map value. A similar 

scatterplot shows field values and corresponding NDVI values, the latter derived from the intermediate 

NDVI product generated in the VHI processing chain.   

(Figure 4) 

Figure 4 also reports basic correlation statistics for comparison of VHI and NDVI. The area of interest is 

generally in good water availability conditions so the expected vegetation indices are quite high. The VHI 

correlation exhibits a rather better fit than the NDVI suggesting that the VHI is, indeed, a good indicator 

of crop health. This improvement is essentially due to the following operations in the processing chain:  

- The introduction of thermal information as the main indicator of water availability. When water is 

no longer available, the plants tend to reduce transpiration thus causing an increase in the surface 

brightness temperature of the canopy;  

- Both NDVI and Land Surface Temperature are normalised against historical maximum and 

minimum values at pixel level. This operation minimises the effect of invariant objects in the 

pixel (e.g. an evergreen tree or a house in the middle of field, at the corner of several fields).  

The project is still ongoing and another field campaign for further validation is planned for the dry season 

2020. It is expected that these additional field / VHI data will populate the lower part of these scatterplots. 

This will enable validation of the VHI under a variety of conditions in Kenya and will also help to 



 
 
develop a validation mechanism for use in other areas where crop stress due to lack of water leads to 

lower yields and crop failure. 

Final VHI maps and plots results 

The final VHI map resulting from the overall process is illustrated in Figure 5, for a sample area observed 

on 30
th
 August 2019. Examples of multi-temporal VHI plots for a rice farm close to Kisumu (Kenya) 

across the growing seasons of 2018-19 are represented and discussed in Figure 6. The VHI pixel values 

are averaged per field. Five of the six represented fields show similar regular VHI curves, just slightly 

shifted in planting time. Field number 6, however, shows an irregular crop growth; probably rice was not 

planted in this field. The insurance provider can use these plots on a field by field basis to derive 

information on the crop growth.  

(Figure 5) 

(Figure 6) 

3. Product Development 

Designing a Service for Insurance Providers  

The majority of agri-insurance providers currently base their compensation payments to farmers on a crop 

performance index; this is in essence based on an assessment of the actual crop yield under critical 

conditions compared to the potential yield under normal conditions. Both measures encounter many 

challenges: the concept of an indicative yield measure in itself is hardly applicable over large areas, such 

as at a national level, because it involves a correct sampling strategy at field level, many measurements of 

product fresh and dry weight, specific estimation methods depending on the crop type, etc. In addition, 

generally among farmers, information on crop productivity is not easily disclosed or may be biased, 

especially when farmers previously obtained loans from a funding institution. Even more questionable is 

the determination of the potential crop yield which could have occurred under normal or ideal conditions: 

this operation cannot be considered a measure but rather an estimate, because that ‘ideal yield’ never 

actually materialised.  

Currently the few insurance schemes commercially deployed in African environments either base the 

actual crop yield estimation on weather data, from the available meteorological stations (Kilimo Salama, 

in Kenya, TAKAFUL in East Africa, Nyala Insurance Company in Ethiopia, PepsiCo in India), or 

through field surveys (AMACO Insurance in Kenya) which are relatively expensive to implement. In the 

latter case, the sampling strategy also implies destruction of part of the yield, through cutting and 

weighing, in a small farm which may be already in critical condition. So the insurance companies tend to 

minimise the number of ‘destructive’ samples although this can be at the expense of data accuracy.  



 
 
This current project gathered information on the above practices after running interviews in various 

workshops with both insurance providers and farmer communities in Kenya. However, the outcome is 

that their main goal is not really looking at the past, to try to measure what is lost, but looking at the 

future to secure whatever reasonable financial settlement can be granted after an under-performant 

growing season. The problem is not the accuracy measure of the yield loss, but the development of a 

method that is able to detect a general drop in crop performance, regardless of the crop type, and rapidly 

to trigger what is in effect a financial investment (rather than compensation) to re-start activities in the 

next season.  

The method here proposed does not aim at trying to estimate yield losses. Instead, the decision of 

insurance providers is based on a comparison of the actual crop performance of a field in the current 

season against the potential crop performance of the same field assuming favorable farming conditions. In 

this context the performance is not necessarily the yield but the health status of the crop throughout the 

farming season as measured by a suitable vegetation index. This is ultimately considered the closest proxy 

to biomass and yield which we can obtain from satellite EO technologies. In the following sections, the 

crop actual and potential VHI curves are explained.  

The Actual VHI Curve 

As discussed, the VHI curve aggregates information on two key indicators of crop health:  chlorophyll 

and surface temperature.  

The presence of chlorophyll in the leaves is obviously one of the main driving factors for the production 

of organic matter in the plant. Novelli et al. (2019) used the Sentinel-2 derived Leaf Area Index (LAI), 

after calibration with the Erosion-Productivity Impact Calculator (EPIC) model, to estimate crop yield. 

They observed a generally good correlation between the yield estimated by the EPIC model (with 

assimilation of LAI data from Sentinel-2) and the observed yield. The authors also observed that the 

EPIC-LAI curve is influenced mainly by the temperature and not by the variable amount of Nitrogen 

applied in their field trial. 

Also the thermal conditions and their duration are essential: a drop in temperature below a certain 

threshold may cause a growth delay or even a block; whereas an increment of the surface temperature of 

the canopy above a certain threshold may have destructive effects. This may be caused mainly by a lack 

of transpiration which, in turn, can be due to water deficit. Therefore the leaf temperature can provide 

information not only on the thermal but also the hydrological crop status.  



 
 
It is common understanding among agronomists that the amount of heat required to complete a given 

plant stage, e.g. flowering (Cross et al., 1972), maturity (Chen, 1973) and even overall biomass (Edey et 

al., 1977), does not vary: the combination of temperature (between thresholds) and time will always be 

the same (Parthasarathi et al., 2013). This is measured in heat units called Degree Days (°D). For 

example, the cumulative thermal/time requirement for different development stages (Growing Degree 

Days) in corn and pearl millet is listed in Table 2. Some authors even calculate the first derivative of the 

thermal/time crop curves to determine parameters of agronomical interest before empirical evidence can 

be taken, such as maximum leaf elongation (Voorend et al., 2014).  

Given the nature of the VHI, which aggregates the main biophysical factors (chlorophyll and temperature) 

driving the crop growth and eventually the biomass, the VHI curve across the growing season can be used 

to monitor the capacity of a crop to go through the development stages normally or to detect delays or 

failures in any of them. In principle, the wider and higher the area under this curve, then the longer and 

more efficient, respectively, is the time for the crop to benefit from chlorophyll at the optimal temperature 

range to produce organic matter. A correlation between that VHI area and crop grain yield (t/ha) is still to 

be examined; however, in recent studies some encouraging results were obtained which correlated one or 

more crop performance parameters (e.g. biomass, yield, etc.) with the area under the profile curve of the 

studied vegetation index (Liu et al., 2018, Novelli et al., 2019). In the following, some scientific 

advances from the vast literature on the subject are briefly reported in chronological order.  

Labus et al. (2002) found strong relationships between wheat yields and integrated NDVI over the entire 

growing season. They used AVHRR-NDVI growth profiles and delivered the strongest yield estimates at 

regional level. However, at the farm level, the 1km
2 
spatial resolution had limited application. Kalubarme 

et al. (2003) observed a significant relationship between wheat yields and fractional area under the NDVI 

profile curve. Deosthali et al. (2006) found correlations between field measured LAI and crop yield in the 

crops grown in fragmented conditions using a crop growth model. Similarly, Lenz (2007) found 

correlations between biomass data, including yield, for various crops and modelled LAI throughout the 

growing season. Battude et al. (2016) estimate corn biomass and yield over large areas using high spatial 

and temporal resolution remote sensing data, similar to Sentinel-2. Some other authors find a good fit 

between various sigmoidal models and the crop growth to predict the amount of maximum biomass (Liu 

et al., 2018). Novelli et al. (2019) combined LAI data from the Sentinel-2 satellite with the EPIC model to 

estimate crop yield. LAI showed a good correlation between the Sentinel-2 estimates and the ground 

measurements. A correlating fit between satellite LAI curves and EPIC modelled LAI curve was also 

observed.  



 
 
The current state of the studies on the VHI precursor indices (i.e. VCI for Chlorophyll and TCI for 

thermal information) generally enable us to infer that the VHI area defined from planting time (first 

minimum) to harvesting time (second minimum, if no dramatic change is recorded before) can be 

assumed as a reasonable proxy of the crop production performance. However, it is our opinion that it is 

still too early to infer accurate yield or biomass data directly from satellite records and derived indices. 

Figure 6 and Figure 7 show VHI sample curves for a number of fields visited during the field surveys. In 

order to ease comparison among plots in Figure 7 the time between planting and harvest was normalised. 

Please, note that these curves also show the success of the cloud removal algorithm during the rainy 

season, because no drops of VHI values due to clouds or haze are recorded in any sample plot at all times.  

(Figure 6, Figure 7) 

The potential VHI curve 

A potential crop growth curve is needed for reference to compare the measured crop performance (actual 

curve). This reference can be conceptualised as the best curve fitting an ideal crop growth cycle as if no 

crop adversity (e.g. pest, drought, disease, nutritional deficit, etc.) would have happened and under the 

best farming conditions.  

Many authors proposed various crop growth models for this estimation (just to quote the most recent 

advances on this topic: Novelli et al., 2019; Berger et al., 2019; Kasampalis et al., 2018; Huang et al., 

2013).  The main advantage of a model approach is the capacity to describe the behaviour of the crop by 

predicting the physiological mechanisms of the crop growth (e.g., phenological development, 

photosynthesis, dry matter, portioning, organogenesis, etc.) using mechanistic equations (Gowda et al., 

2013; Novelli et al., 2019). However, their applicability is complex at regional scales because they 

generally assume that the field conditions are uniform (Kasampalis et al., 2018). In addition, they need a 

considerable amount of input data on environmental factors (e.g. soil, weather data, etc.) and field 

management strategies (e.g. irrigation, nitrogen supply, etc.) which are unlikely to be available in African 

environments.   

When undertaking research activities on this topic a common pitfall is to attempt to fit overly complicated 

models (Paine et al., 2012); inappropriate functional forms often fail to converge or yield unreasonable 

parameter estimates. African agricultural contexts, especially among smallholder farmers, do not have 

long and consistent data time series at high granularity to support robust statistics for crop growth 

dynamics. On the other hand, the time series of the most recent satellite missions (e.g. the Sentinel 

constellation), which are suitable for these kinds of applications, are also only 3 to 4 years long. So it is 



 
 
important to ensure that any model and statistical approach is as little data demanding as possible and to 

manage the unavoidable approximation of the results until more comprehensive time series are available.   

The approach applied in this work follows essentially the experimental practice of many authors where 

various plant growth models are tried and compared with the observed field data with suitable statistical 

tests; eventually the best candidate curves explaining the field dynamics are selected (Jiang et al., 2017; 

Vorobiova et al., 2017; Paine et al., 2012; Liu et al., 2018). Generally the curve models are generated by 

linear, non-linear or exponential equations describing the change in biomass with a field measure or, more 

often, a vegetation remote sensed index. Then the fit of the model on the growth trajectory of field data is 

checked with an unbiased statistical approach, e.g. R
2
 (Liu et al., 2018), RMSE (Novelli et al., 2019), or 

other indicators of crop dynamics, such as the Large Integral and Small Integral of the areas covered by 

the curves’ trajectories (De Castro et al., 2018).  

In our work, after simple observation of the multi-temporal data time series for different crops compared 

with the field observation for the same crops in Kenya in the growing season 2018-19 (Paine et al., (2012) 

recommend a preliminary data observation as essential for the choice of the best curve model) we 

identified the most interesting candidate curves possibly fitting the data, e.g. various sigmoidal growth 

trajectory (Liu et al., 2018), asymmetric Gaussian, cubic spline (Vorobiova et al., 2017) and cycloid 

curve. The equation of the cycloid (Ehrenborg, 2017; Hoheisel et al., 2009) seemed to fit particularly well 

the high performant fields on a number of tested crops in the best farming conditions, especially corn and 

rice. It also acceptably fits natural vegetation dynamics. The method only needs two inputs from the 

farmers or insurance providers about the planting / harvesting times and two inputs on the absolute 

historical maximum / minimum of the VHI time series, of the considered pixel or field (see Figure 8). 

The ideal VHI values on the Y axis are calculated with the following parametric equations (lenz, 2017):  

  y = R - r cos(t)  

  x = R t – r sin(t)    [2] 

where: 

- R = 0.5 (radius of external circle) 

- r = radius of the internal circle generating the VHI arch; values, re-scaled from 0 to 1, are 

calculated as follows: (VHI max – VHI min)/200 

- t = between +π/2 and -π/2 



 
 
whereas the length of X axis is always π, so each column width depends on the number of points (satellite 

acquisitions) and is adjusted accordingly. In practical terms, the assumption is that the larger is r and the 

larger is the area under the potential curve, then the higher is the potential crop performance of that pixel 

(or field), with that crop, under the given soil fertility and bio-climatic conditions. 

(Figure 8) 

In order to test the goodness of fit of the cycloid trajectory, the Root Mean Square Error between the 

potential curve and its correspondent actual curve was calculated. In addition, the areas of the two curves 

were normalised and compared, integrating the function between planting and harvesting time points on 

both curves (Small Integral in the sense defined by Eklundh, et al., 2011 and de Castro et al., 2018). 

Table 3 shows examples of cycloidal curves calculated for a number of crops compared with the relevant 

field actual curves. The fields for this comparison were not randomly chosen but were all surveyed in our 

field campaign in Kenya and selected for the best farming practices, as they had to check the assumption 

that the cycloid is to make them suitable for a comparison with an ideal VHI curve. All actual curves are 

re-scaled to π on the X axes, whereas the potential curves are normalised on the average between the two 

minima of the actual VHI trajectory. The table shows also the RMSE values and the area difference, 

calculated in percentage, between the two curves. All fractions of bio-physical index areas are above 

90%.  

(Table 3) 

Similarly, Table 4 shows samples of cycloidal curves for visited fields under poor farming conditions 

and/or significant signs of water deficit. In this case, all fractions of bio-physical index areas are well 

below 60%. Generally, it is assumed that when the VHI index falls below about 30%-35% the vegetation 

is dead (Rojas et al. 2011).  

(Table 4) 

A practical example  

The actual and the potential crop performances are measured and estimated, respectively, by the VHI 

curves explained in the previous paragraphs. The method as presented here calculates a ratio in 

percentage terms between the areas defined under the two curves (actual growth over potential) and ranks 

the fields in a list from the top high performant field to the bottom one. The list can be sorted by county, 

sub-county or any other relevant area, depending on the insurance needs. The insurance providers are 

used to working with thresholds which may or may not trigger the farmer payouts depending on various 

financial criteria of the insurance policy. For example, from the workshops conducted in Kenya it was 



 
 
confirmed that at least one insurance provider aims at guaranteeing 70% of the crop yield, so if the ratio 

between actual  and potential performance falls below that, the insurance top up the financial equivalent 

up to 70%. Other insurances may apply different criteria on the VHI index rank.  

Figure 9 shows a snapshot of the proposed tool which is described here.   

(Figure 9) 

The table at the top of the figure is composed of yellow columns, filled in with insurance and farmers’ 

inputs; a green column, which lists the fraction of area between of the biophysical index from the most to 

the least performant field; and, the white columns show the individual VHI values per field, per date. The 

bottom left window shows the actual (orange) and the potential (blue) VHI curves in the period 

indicated by the farmer in Column C (planting) and D (harvesting time).  In this example the rice field 

seemed to be slightly under-performant in the first half of the growing period, but it caught up quite well 

in the second half, resulting eventually in 75% of crop performance for the overall growing season, as 

shown in the green column. Decisions on farmer compensation are primarily based on the green column. 

In the bottom right window the relevant rice field is outlined in orange on the Google Earth map. The tool 

will allow dynamic videos of the VHI maps in false colour across the growing season.    

These VHI maps in false colour, the VHI values, the areas under actual and potential curves and their 

shape and size are all transparent information to farmers, surveyors and insurers. The tool can be 

published online for all fields in the insurance scheme. This way the whole system is not exposed to 

manipulation or corruption. However, the field owners, the thresholds applied and the payouts are 

disclosed only to the relevant stakeholders after contractual agreement.   

4. Service Development 

Objectives 

From the example shown in Figure 9, we have a method of providing information to the insurance 

providers, farmers and other stakeholders which will enable the performance of a crop, in any given 

growing season, to be monitored against the expected performance of the crop without ‘adversity’, such 

as drought stress.  This satellite map based index provides the information to enable the insurance 

providers to compensate farmers where crop performance is significantly below the expectation.  The 

method enables a reliable and consistent decision to be made more quickly as the traditional stages of 

making a claim can be streamlined, as illustrated in Figure 10.   

(Figure 10) 



 
 
Stimulating the agri-insurance market will also spur broader economic gains. More widespread uptake of 

insurance raises investment and long-term economic growth, thereby helping to reduce poverty, and the 

employment of intermediaries to advise farmers, based on the detailed information available, will support 

job creation. The project sees young women as ideal candidates to be trained as intermediaries between 

the technology (an app on their phone) and their village/community of farmers, to whom they bring the 

information in an understandable and unbiased way. This is, therefore, a very practical application of 

satellite Earth Observation (EO) technology that helps to develop resilience to irregular drought 

conditions.  

As well as helping to develop the agri-insurance market, the VHI data can also enable individual farmers 

and farmer cooperatives to understand the variation in their yields and potential crop value if they plant a 

different mix of crops on their land. The level of detail within the VHI data will help farmers and 

cooperatives to make decisions on future planting even when the average size of farms is only around 

1ha. Such information, aggregated to the district or county level, is also of value to Kenya’s central and 

local government agencies in helping to understand the wide range of climate-related impacts on 

agriculture and thereby assist them in developing strategies to mitigate these risks. 

Cost Effectiveness Analysis 

In accordance with the guidelines for the IPP projects supported by the UK Space Agency, Cost–

Effectiveness Analysis (CEA) is the selected means of assessing the impacts of delivered space-related 

services. CEA is a type of ‘Value-for-Money analysis that compares the costs of alternatives that achieve 

different amounts of the same impact.’ (HM Treasury, 2013). The particular advantage of CEA compared 

with, for example, Cost-Benefit Analysis is that CEA provides a means of comparison without the need to 

put a monetary value to impacts that are difficult to quantify and is, therefore, significantly less time-

consuming for comparing alternative strategies. 

The CEA calculations for this project are designed to compare in detail the approaches based on the EO-

derived VHI with existing monitoring systems which are typically based on the use of weather station 

data backed up with field visits by experienced surveyors and agronomists. This comparison is based on 

the total costs for preparation and delivery of the VHI products to end-users and the costs for making field 

visits to farms and for interpreting the information currently available. 

However, the limitations of the existing monitoring systems are that the weather stations provide only one 

point of drought measurement over quite a wide geographic area, typically an area with a 10km radius, 

and farm visits can only be undertaken on an infrequent basis, due to cost. As a result, the detail available 



 
 
from existing systems is insufficient to provide individual famers, and their insurers, with information 

relevant to their specific circumstances; the information is only available as average data for groups of 

farmers in an area. In addition, the weather stations do not provide information on irrigated fields, where 

the farmers could prevent yield losses despite poor rainfalls; whereas the weather station data would 

deliver a false positive of crop failure.  

The costs for providing the VHI data are based on the analysis of a large volume of data. Whilst 

processing these data is computationally quite heavy, the processing chain is quite stable and achieves 

consistent results, as indicated in the various illustrations presented in this paper. However the input data, 

both Sentinel-2 and MODIS are free to use and so all available data can be used to improve the quality of 

the VHI output. 

The production costs, therefore, are based on the development of the automated image processing chain, 

running the process, quality checking of the output, to ensure consistency, and, delivery of data to end 

users. This delivery will be either as tabulated data or digital maps delivered via an easy to use online 

dashboard that will be available, as required, to insurance providers, farmer cooperatives and other 

interested users.  

These CEA calculations will be finalised when the VHI testing period is completed within the project 

(currently planned for mid-2020) and will be undertaken by Vivid Economics Ltd 

(https://www.vivideconomics.com/) who are responsible for undertaking a Monitoring and 

Evaluation review of the current project and completing the CEA task. It is anticipated that this 

analysis will demonstrate that a VHI generated from satellite data does provide a cost-effective solution 

for generating detailed crop health information with a spatial resolution of 20m and a temporal resolution 

of five days when compared with existing methods. This resolution will generate around 1,000 VHI data 

points for a 1ha farm per growing season; significantly more than current methods. 

Service design 

The insurance companies can and must play a substantial role in agricultural risk management, especially 

in developing countries, which are mostly in need of an affordable insurance service. In turn, the insurers 

need new technologies and methods to monitor extensive farmed areas throughout the growing season.  

The designed VHI products, including drought maps of crops and flood damage mapping products, can be 

easily offered to both insurers and farmers in order to enable them to take decisions on the risk and 

manage the insurance schemes to make payments where crops have underperformed. The insurance 

contracts based on this new concept should feature annual premiums that are affordable enough to attract 

https://www.vivideconomics.com/


 
 
a mass participation amongst smallholder farmers. The aim, therefore, is to make the initial cost of the 

VHI component of such insurance less than 10 per cent of the annual insurance premium; these costs will 

be finalised once the service levels have been defined and agreed with the insurance providers. This target 

cost is based on the current size of the agri-insurance market.  It is anticipated that expansion of this 

market will lead to significantly reduced costs per farmer in the future.  

An additional advantage is the indemnity arrangement: after electronic delivery of the map an automatic 

payout process for the affected fields could potentially be triggered, subject to insurance approval, 

without significant paperwork for farmers and without an expensive local survey for insurers, as 

illustrated in Figure 10. The VHI map itself, in this case, becomes the field survey, enabling farmers to 

react quickly and, if appropriate, to re-plant a different crop if conditions are suitable.  

The product, ready for distribution in a comprehensive end-to-end service, will also benefit from mobile 

technology, where the farmer communities, represented especially by women actors, will have access to 

technical information in an easy, user friendly way.  

The main challenge encountered in the implementation of this project is not really the technical 

arrangement of the application. Indeed, after the demonstrated technical success of this product, the 

project team is now engaging in the dissemination of this new approach among local communities in 

Kenya. The project has already reached out to a number of local farmers in West and Central-East Kenya 

through bespoke workshops organised in their areas and with local translators. The VHI concepts were 

extremely well received. However, the insurance structure to implement the project and the engagement 

from governmental authorities, both at central and county level, are key to guarantee the social and 

market success of this project. 

5. Conclusions 

The satellite based vegetation health index, as presented here, has the potential of informing a new 

insurance scheme and the capability to impact directly on people. Even though the VHI calculation with 

Sentinel-2 and MODIS data involves significant computational efforts and an industrial infrastructure 

when covering vast areas (typically nationwide), the previous and the current studies have demonstrated 

an improved performance from VHI for crop condition monitoring than the traditional NDVI, VCI and 

other used indices.  

The validation results showed encouraging improvements in the thematic accuracy due to the introduction 

of the thermal information in the index composition. This extra information, quite unusual in traditional 

satellite EO-based indices, seems to be key to describing the photosynthetic capacity of the leaves, the 



 
 
water availability and the overall crop status, even though the MODIS data has relatively low spatial 

resolution,.  

The free availability of Sentinel-2 data regularly every 5 days enables unprecedented monitoring potential 

for the crops, which can be displayed in user friendly applications, and even on portable technologies, 

through the actual crop growth curve which can be compared to a potential growth under ‘ideal’ farming 

conditions in the considered field. In rural areas of countries with food security issues, like Kenya, the 

improved access to such crop health information will help farmers to improve their yields and support the 

micro-insurance industry to reduce the financial impact of drought events leading in turn to improved 

stability for farmers’ livelihoods. 

The two key pieces of information provided by this method, i.e. the multi-temporal actual and potential 

VHI curves from planting to harvesting time, only need a relatively limited number of inputs from 

farmers (specifically planting / harvesting dates), insurers (field identity) and the system itself (complete 

multi-temporal time series of satellite data from commencement of the archive).  This makes the solution 

quite simple for the users (even though computationally complex) which can be applied, with acceptable 

approximations, to the majority of the cash crops in different agricultural and climatic environments.  

The solution is designed especially for smallholder farmers who can typically farm more than one crop in 

a field (inter-crop). Even though not yet tested, there is evidence that the method could also be migrated 

to different environments and, possibly, beyond tropical-equatorial climates. Therefore this solution can 

inform a new, affordable insurance scheme, as currently under test in Kenya, which has the potential to 

attract significant participation from smallholder farmers in many parts of the world. 
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Tables 

 

Table 1: List of Common Drought Indices (Source: S. Nyemeyer, 2008) 

 

 

Table 2: Cumulative Degree Days or thermal requirement for different development stages (Source: 

Parthasarathi et al., 2013)   

 

 



 
 
  Actual and potential VHI curves Crop type RMSE Actual 

VHI area 

Potential  

VHI area 

% 

   

Rice  6.7 737 655 112 

 

Cassava 11.6 1354 1278 105 

 

Corn  7.3 359 390 91 

 

Grassland  11.1 521 520 100 

Table 3: Comparison between actual and potential VHI curves in good performing fields (Source: 

Project Report, Airbus, 2019) 

Actual and potential VHI curves Crop type RMSE Actual 

VHI area 

Potential  

VHI area 

% 

 

Corn1 13.3 142 374 38 

 

Cow pea 8.5 290 490 59 

 

Sorghum  16.9 146 460 32 

 

Corn2 21.8 422 775 41 

Table 4: Comparison between actual and potential VHI curves in poorly performing fields 

(Source; Project Report, Airbus, 2019) 

  



 
 

Figures 

Figure 1: Location of the study area (Source: snapshot from GoogleEarth) 

 

Figure 2: VHI image processing chain (Source: Project Report, Airbus, 2019) 



 
 

 

Figure 3: Multi-temporal VHI on a farmed field.  Blue line: VHI without cloud removal. Red line: VHI 

with cloud removal (Source: Project Report, Airbus, 2019) 

 

 

Figure 4: Validation results: VHI and NDVI comparison (Source: Project Report, Airbus, 2019) 

 

 

 

 



 
 

 

  

Figure 5:  Left: satellite image (Source: GoogleEarth) before VHI processing on a large rice farm close to 

Kisumu (Amimos). Right: VHI of the same area mapped at the end of August 2019 (rice before 

harvesting time). The farmers grew rice in the six fields outlined in the blue box and different crops 

elsewhere, in a crop rotation scheme (Source: Project Report, Airbus, 2019) 

 

 

Figure 6: VHI plots of the six rice fields represented in Figure 5Error! Reference source not found. 

across the growing season in 2019. Fields numbered 1 to 5 show normal crop growth curves, with slight 

shifts in planting/harvesting times due to their farming practices. Field number 6, however, shows a sub-

normal crop growth; possibly indicative of a different crop in that field (Source: Project Report, Airbus, 

2019)  

 

 

 



 
 

 

 

 

Figure 7: Example of VHI curves: each curve represents the crop cycle in one field. Planting and 

harvesting times are normalised for easy comparison (Source: Project Report, Airbus, 2019)  

 

 

 

Figure 8: A cycloid is the curve traced by any point on the radius R of a wheel as it rolls along a straight 

line. The radius of the internal circle r is defined as the difference between the absolute historical 

maximum and minimum in the VHI time series. (Source: Ehrenborg, 2017, adapted by Airbus 2019) 

 



 
 

 

Figure 9: Example of tool designed for use by insurance providers (Source: Project Report, Airbus, 2019)   

 

 

Figure 10: Comparison of the traditional insurance flow of operations with the new satellite index based 

method (Source: Project Report, Airbus, 2019) 


