Agriculture Simulations (Sensonomic)


Agriculture Simulations makes use of Earth observation (EO) data to solve challenges for agricultural planning, harvesting, logistics and long-term food systems resilience in a changing climate. It gives dynamic insight into complex human and natural systems by combining computational simulations and EO data. It enables both short-term operational and long-term strategic decision-making by actors in the food chain – from independent farmers wanting to know where to harvest, to large traders needing to know who to buy sustainable produce from and governments and NGOs looking to optimise strategic infrastructure investments.

A systems approach, with the clients’ operations front and centre

Solution benefits

  • Yield prediction – Through combining advanced data analytics with standard EO products we can predict future yield.
  • Harvest planning – Produce ripens within a short time frame, and often farmers have limited access to labour and equipment. We optimise dynamic resource allocation to increase yield capture and value.
  • Logistics and operations – After harvesting high value produce must be processed, stored, and distributed. Our simulation tool provides daily advice to optimise first-mile logistics and operations.
  • Investments – Aggregating inputs from the products above we offer a robust and dynamic investment model, which can be updated regularly as new data is made available. This ensures an improved understanding of where and when to allocate capital.
  • It provides daily insights into unintended consequences on agricultural system as a whole, and creates insight into what consequences an agronomic, economic or social policy decision can lead to.
  • It captures how decisions influence both humans and nature through thousands of simulations in a digitised version of the clients’ agricultural landscape.

Key technical features

  • It is a rules-based computational simulation approach for analysing input from multiple EO data sources, in a changing environment.
  • All simulations are carried out in a digitised version of reality, in which EO data layers makes up the components of the ‘simulated world’.
  • Our solution is delivered via a web-based Software-as-a-Service.
  • It can be integrated with other systems through an application programming interface (API).
  • It consumes both open and commercial EO data – with optical EO being the main data source.
  • The data is refreshed from daily to every month, dependent on data source.
  • The resolution of imagery used is between
    10-15 metre for systems understanding of large geographies, and down to 50 centimetre for individual farms where object identification may be necessary.
  • Some input generation such as yield, and harvest timing requires local inputs through handheld devices to ground-truth estimates derived from EO.

Case studies

Sensonomic is assisting the International Fund for Agricultural Development (IFAD) and the countries of Senegal, Mali and Cameroon to optimise their investment in agricultural infrastructure in rural areas. The product’s simulations show which roads to upgrade and where to invest in storage facilities to support agricultural intensification under different scenarios of climate change and population growth.

Yield prediction for tropical agriculture – working across multiple crops we provide large plantation producers with improved yield prediction services. In Malaysia, Fiji, Vanuatu, Solomon Islands, Burkina Faso, Portugal. With the following crops: sugar, oil palm & olives. 

Organisation overview

Our UK operation is headquartered in London’s Canary Wharf, at Level39. Our diverse team is comprised of geographers, technologists, biologists, product developers, and economists. We have a strong research collaboration with leading academics from the University of Oxford.